The Sandwich Theorem
نویسنده
چکیده
This report contains expository notes about a function ti(G) that is popularly known as the Lovasz number of a graph G. There are many ways to define G(G), and the surprising variety of different characterizations indicates in itself that ti(G) should be interesting. But the most interesting property of 8(G) is probably the fact that it can be computed efficiently, although it lies “sandwiched” between other classic graph numbers whose computation is NP-hard. I have tried to make these notes self-contained so that they might serve as an elementary introduction to the growing literature on Lovasz’s fascinating function. The Sandwich Theorem DEK notes last revised 6 December 1993 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orthogonal labelings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convex labelings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The theta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alternative definitions of ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization via eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A complementary characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elementary facts about cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definite proof of a semidefinite fact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Another characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The final link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The main converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Another look at TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zero weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nonzero weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The direct sum ofgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The direct cosum of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A direct product of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A direct coproduct of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Odd cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comments on the previous example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regular graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consequence for eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further examples of symmetric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A bound on ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compatible matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Antiblockers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A characterization of perfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Another definition of 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Facets ofTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orthogonal labelings in a perfect graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The smallest non-perfect graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perplexing questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 5 6 6 8 8 9 11 12 13 14 14 15 16 17 17 19 19 20 21 22 24 27 27 28 30 30 31 32 35 36 37 39 40 42 43 45 The Sandwich Theorem It is NP-complete to compute w(G), the size of the largest clique in a graph G, and it is NP-complete to compute x(G), the minimum number of colors needed to color the vertices of G. But Grotschel, Lovasz, and Schrijver proved [5] that we can compute in polynomial time a real number that is “sandwiched” between these hard-to-compute integers: w(G) I g(c) L x(G). ( > * Lovasz [ 131 called this a “sandwich theorem.” The book [7] develops further facts about the function 6(G) and shows that it possesses many interesting properties. Therefore I think it’s worthwhile to study ti(G) closely, in hopes of getting acquainted with it and finding faster ways to compute it. Caution: The function called d(G) in [13] is called G(c) in [7] and [12]. I am following the latter convention because it is more likely to be adopted by other researchers-[71 is a classic book that contains complete proofs, while [13] is simply an extended abstract. In these notes I am mostly following [ 71 and [la] with minor simplifications and a few additions. I mention several natural problems that I was not able to solve immediately although I expect (and fondly hope) that they will be resolved before I get to writing this portion of my forthcoming book on Combinatorial Algorithms. I’m grateful to many people-especially to Martin Grotschel and L&z16 Lovasz--for their comments on my first drafts of this material. These notes are in numbered sections, and there is at most one Lemma, Theorem, Corollary, or Example in each section. Thus, “Lemma 2” will mean “the lemma in section 2” . 0. Preliminaries. Let’s begin slowly by defining some notational conventions and by stating some basic things that will be assumed without proof. All vectors in these notes will be regarded as column vectors, indexed either by the vertices of a graph or by integers. The notation J: 2 y, when II: and y are vectors, will mean that xV > yV for all v. If A is a matrix, A, will denote column v, and A,,,, will be the element in row u of column v. The zero vector and the zero matrix and zero itself will all be denoted by 0. We will use several properties of matrices and vectors of real numbers that are familiar to everyone who works with linear algebra but not to everyone who studies graph theory, so it seems wise to list them here: (i) The dot product of (column) vectors a and b is
منابع مشابه
Subordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کاملOrthogonal Ham-Sandwich Theorem in R
The ham-sandwich theorem states that, given d ≥ 2 measures in R, it is possible to divide all of them in half with a single (d − 1)-dimensional hyperplane. We study an orthogonal version of the ham-sandwich theorem and define an orthogonal cut using at most d hyperplanes orthogonal to coordinate axes. For example, a hyperplane orthogonal to a coordinate axis and the boundary of an orthant are o...
متن کاملHam Sandwich with Mayo: A Stronger Conclusion to the Classical Ham Sandwich Theorem
The conclusion of the classical ham sandwich theorem of Banach and Steinhaus may be strengthened: there always exists a common bisecting hyperplane that touches each of the sets, that is, intersects the closure of each set. Hence, if the knife is smeared with mayonnaise, a cut can always be made so that it will not only simultaneously bisect each of the ingredients, but it will also spread mayo...
متن کاملNew Descriptions of the Lovász Number, and the Weak Sandwich Theorem
In the seminal work [8] L. Lovász introduced the concept of an orthonormal representation of a graph, and also a related value, now popularly known as the Lovász number of the graph. One of the remarkable properties of the Lovász number is that it lies sandwiched between the stability number and the complementer chromatic number. This fact is called the sandwich theorem. In this paper, using ne...
متن کاملThe asymmetric sandwich theorem
We discuss the asymmetric sandwich theorem, a generalization of the Hahn–Banach theorem. As applications, we derive various results on the existence of linear functionals that include bivariate, trivariate and quadrivariate generalizations of the Fenchel duality theorem. Most of the results are about affine functions defined on convex subsets of vector spaces, rather than linear functions defin...
متن کاملFast Bivariate P-splines: the Sandwich Smoother
We propose a fast penalized spline method for bivariate smoothing. Univariate Pspline smoothers Eilers and Marx (1996) are applied simultaneously along both coordinates. The new smoother has a sandwich form which suggested the name “sandwich smoother” to a referee. The sandwich smoother has a tensor product structure that simplifies an asymptotic analysis and it can be fast computed. We derive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 1 شماره
صفحات -
تاریخ انتشار 1994